A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity

نویسندگان

  • Sanggyun Kim
  • David Putrino
  • Soumya Ghosh
  • Emery N. Brown
چکیده

The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Granger Causality Measure for Point Process Models of Neural Spiking Activity

A network-centric view of brain function that is becoming more widely accepted would benefit from the directional interaction information that occurs between multiple neurons. Granger causality has been used previously to address this need, but previous methods can only operate on continuos-value data sets. This prevents it from being directly applied directly to neural spike train data so prev...

متن کامل

Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and ...

متن کامل

Using partial directed coherence to describe neuronal ensemble interactions.

This paper illustrates the use of the recently introduced method of partial directed coherence in approaching how interactions among neural structures change over short time spans that characterize well defined behavioral states. Central to the method is its use of multivariate time series modelling in conjunction with the concept of Granger causality. Simulated neural network models were used ...

متن کامل

A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects.

Multiple factors simultaneously affect the spiking activity of individual neurons. Determining the effects and relative importance of these factors is a challenging problem in neurophysiology. We propose a statistical framework based on the point process likelihood function to relate a neuron's spiking probability to three typical covariates: the neuron's own spiking history, concurrent ensembl...

متن کامل

Algorithms for the analysis of ensemble neural spiking activity using simultaneous-event multivariate point-process models

Understanding how ensembles of neurons represent and transmit information in the patterns of their joint spiking activity is a fundamental question in computational neuroscience. At present, analyses of spiking activity from neuronal ensembles are limited because multivariate point process (MPP) models cannot represent simultaneous occurrences of spike events at an arbitrarily small time resolu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011